Mar 27

LAPORAN SISTEM MULTIMEDIA

I.       Pendahuluan

A.   Latar Belakang

Sifat setiap orang sudah tentu berbeda satu sama lainnya. Karena hal tersebut tentu saja banyak tipe – tipe mahasiswa di berbagai kampus. Oleh karena itu kelompok kami akan men-sharing beberapa tipe mahasiswa yang berada di Binus University menurut kelompok kami.

B.   Tujuan

Tujuan kami membuat video ini hanyalah bersifat menghibur dan membagikan informasi kepada siapapun yang melihat video ini. Khususnya inforamasi tentang macam – macam tipe Binusian

C.   Manfaat

–          Membantu kita mempelajari  sistem multimedia khususnya video.

–          Memberikan pemahaman mengenai proses  membuat video

–          Melatih koordinasi dan kerjasama sesama kelompok

–          Meningkatkan kreatifitas masing – masing individu

II.    ISI

A.  Timeline

Minggu ke-1 Pengambilan video
Minggu ke-2 Pengeditan video
Minggu ke-3 Pembuatan laporan

 B.   Storyboard

img017img019img02110153603_10201103030732648_220686368_n10156982_10201103031732673_1149656595_n986793_10201103032772699_427834500_n   10168367_10201103033652721_869304663_n972834_10201103034532743_1328933162_n

C.   Deskripsi Video

Video ini menceritakan tentang tipe-tipe mahasiswa yang ada di Univeritas Bina Nusantara. Dalam kehidupan perkuliahan sehari – hari kelompok kami mendapati ada bermacam – macam kebiasaan mahasiswa Bina Nusantara yang menarik untuk diperhatikan. Untuk memvisualisasikan apa yang telah kelompok kami perhatikan maka dibuatlah video mengenai macam – macam tipe Binusian ini. Terdapat tujuh tipe Binusian yang kelompok kami visualisasikan dalam video ini. Masing – masing tipe akan digambarkan dalam scene yang berbeda – beda. Tipe – tipe Binusian tersebut antar lain :

  1. Binusian Taping Cabut
  2. Binusian Tukang Terlambat
  3. Binusian Titip Taping
  4. Binusian Penjilat
  5. Binusian SKS (sistem kebut sejam)
  6. Binusian Gadget Mania
  7. Binusian Tukang Tidur
  8. Binusian Barisan Belakang
  9. Binusian Rajin

III.  Penutup

Demikian laporan mengenai video tipe – tipe Binusian yang telah kami susun. Semoga apa yang kami telah hasilkan bermanfaat bagi kami dan pihak – pihak lainnya. Ucapan terima kasih kami ucapkan juga kepada pihak – pihak yang telah membantu selaa proses pembuatan video hingga penyusunan laporan ini berlangsung. Tidak lupa kami ucapkan terima kasih dan suka cita karena telah menyaksikan video kami.

 

Anggota Kelompok :

–         Arvin Darmawan Pena          (1601218230)

–         Handy Wijaya                           (1601218325)

–         Kevin Gabrielle Jason           (1601220020)

–         Iqbal A. Ramadhan                (1601225684)

–         Stevanus Fanius                      (1601223205)

Link Video : http://www.youtube.com/watch?v=jdCCiTTJnHM

Mar 18
  1. Apa yang dimaksud Adversarial Search & Constraint Satisfaction Problems? berikan contoh?

–          Adversarial Search

The search tree in adversarial games such as tic-tac-toe consist of alternating levels where the moving (MAX) player tries to maximize fitness and then the opposing (MIN) player tries to minimize it. To find the best move the system first generates all possible legal moves, and applies them to the current board. In a simple game like tic-tac-toe this process is repeated for each possible move until the game is won, lost, or drawn. The fitness of a top-level move is determined by whether it eventually leads to a win.

Contoh : Backgammon, Permainan kartu, Halma, Catur

 

–          Constraint Satifaction Problems

Search can be made easier in cases where the solution insted of corresponding to an optimal path, is only required to satisfy local consistency conditions. We call such problems Constraint Satisfaction (CS) Problems.

Contoh: teka teki silang

2.Apa itu Propositional Logic? berikan contoh?

Propositional (zeroth-order) logic is simply capable of making and verifying logical statements. First-order (and higher order) logics can represent proofs (or increasing hierarchial complexity) – true/false

Contoh :

–   Tanjung karang berada di provinsi Lampung  (Proposisi bernilai benar)

–     Susilo Bambang Yudhoyono adalah presiden AS (Proposisi bernilai salah)

–     1 + 1 =2 (Proposisi  bernilai benar)

–     2 + 2 = 3 (Proposisi bernilai salah)

 

3. Buat coding (Boleh C, C++ atau Java) untuk  Algoritma A & Algoritma A* (A Star)?

Contoh algoritma A dalam Java

package hitungratarata5bil;

import java.io.*;

public class HitungRataRata5Bil {

public static void main(String[] args) {
                                                              double x = 0;
                               int a = 0;
                               BufferedReader br = new BufferedReader(new InputStreamReader(System.in));
                               String strbilangan = null;

                               while (a < 5) {
                                   System.out.print("Masukkan bilangan ke-" + a + " : ");
                                   try {
                                       strbilangan = br.readLine();
                                   } catch (IOException ioe) {
                                       System.out.println("Kesalahan IO, program berhenti");
                                       System.exit(1);
                                   }
                                   x = x + Double.parseDouble(strbilangan);
                                   a = a + 1;
                               }

                               x = x / 5;
                               System.out.println("Rata-rata bilangan yang dimasukkan adalah " + x);        
               }
}

 

Contoh algoritma A * dalam Java

import java.util.Iterator;

import java.util.LinkedList;

import java.util.PriorityQueue;

import java.util.Queue;

 

public class AStar {

private PriorityQueue<Node> openQ;

private Queue<Node> closedQ;

private int [][] map;

private int startX, startY, endX, endY;

private Node endNode;

 

public AStar(int[][]map, int startX, int startY, int endX, int endY) {

openQ = new PriorityQueue<Node>();

closedQ = new LinkedList<Node>();

this.map = map;

this.startX = startX;

this.startY = startY;

this.endX = endX;

this.endY = endY;

endNode = new Node(endX, endY, 0, null);

 

private int manhattanDist(Node curr, Node target) {

int cX, tX, cY, tY;

cX = curr.getX();

tX = target.getX();

cY = curr.getY();

tY = target.getY();

return 10*(Math.abs(cX – tX)+Math.abs(cY – tY));

}

private boolean onClosedList(Node node) {

if(closedQ.isEmpty() == true)

return false;

Iterator<Node> it = closedQ.iterator();

while(it.hasNext()) {

Node nodeCheck = it.next();

if(nodeCheck.getX() == node.getX() && nodeCheck.getY() == node.getY())

return true;

}

return false;

}

private boolean checkAndReplaceOpen(Node node, Node curr, boolean diag) { // true means replaced

Iterator<Node> it = openQ.iterator();

while(it.hasNext()) {

Node nodeCheck = it.next();

if(nodeCheck.getX() == node.getX() && nodeCheck.getY() == node.getY()) {

if(node.getG() < nodeCheck.getG()) {

if(diag == true)

node.setG(curr.getG()+14);

else

node.setG(curr.getG()+10);

node.setF(node.getG() + node.getH());

node.setParent(curr);

return true;

}

return false;

}

}

return false;

}

private void addNeighbors(Node node) {

int x = node.getX();

int y = node.getY();

if((x+1)< map[y].length && map[y][x+1] !=1) {

Node newNode = new Node(x+1, y, map[y][x+1], node);

if(onClosedList(newNode) == false) {

newNode.setG(node.getG()+10);

newNode.setH(manhattanDist(newNode, endNode));

newNode.setF(newNode.getG()+newNode.getH());

if(checkAndReplaceOpen(newNode, node, false) == false)

openQ.add(newNode);

}

}

if((x-1) >= 0 && map[y][x-1] !=1 ) {

Node newNode = new Node(x-1, y, map[y][x-1], node);

if(onClosedList(newNode) == false) {

newNode.setG(node.getG()+10);

newNode.setH(manhattanDist(newNode, endNode));

newNode.setF(newNode.getG()+newNode.getH());

if(checkAndReplaceOpen(newNode, node, false) == false)

openQ.add(newNode);

}

}

 

if((y+1) < map.length && map[y+1][x] !=1) {

Node newNode = new Node(x, y+1, map[y+1][x], node);

if(onClosedList(newNode) == false) {

newNode.setG(node.getG()+10);

newNode.setH(manhattanDist(newNode, endNode));

newNode.setF(newNode.getG()+newNode.getH());

if(checkAndReplaceOpen(newNode, node, false) == false)

openQ.add(newNode);

}

}

if((y-1) > 0 && map[y-1][x] !=1) {

Node newNode = new Node(x, y-1, map[y-1][x], node);

if(onClosedList(newNode) == false) {

newNode.setG(node.getG()+10);

newNode.setH(manhattanDist(newNode, endNode));

newNode.setF(newNode.getG()+newNode.getH());

if(checkAndReplaceOpen(newNode, node, false) == false)

openQ.add(newNode);

}

}

 

if((y+1) < map.length && (x+1) < map[y].length && map[y+1][x+1] !=1) {

Node newNode = new Node(x+1, y+1, map[y+1][x+1], node);

if(onClosedList(newNode) == false) {

newNode.setG(node.getG()+14);

newNode.setH(manhattanDist(newNode, endNode));

newNode.setF(newNode.getG()+newNode.getH());

if(checkAndReplaceOpen(newNode, node, true) == false)

openQ.add(newNode);

}

}

if((y+1) < map.length && (x-1) >= 0 && map[y+1][x-1] !=1) {

Node newNode = new Node(x-1, y+1, map[y+1][x-1], node);

if(onClosedList(newNode) == false) {

newNode.setG(node.getG()+14);

newNode.setH(manhattanDist(newNode, endNode));

newNode.setF(newNode.getG()+newNode.getH());

if(checkAndReplaceOpen(newNode, node, true) == false)

openQ.add(newNode);

}

}

if((y-1) > 0 && (x-1) >= 0 && map[y-1][x-1] !=1) {

Node newNode = new Node(x-1, y-1, map[y-1][x-1], node);

if(onClosedList(newNode) == false) {

newNode.setG(node.getG()+14);

newNode.setH(manhattanDist(newNode, endNode));

newNode.setF(newNode.getG()+newNode.getH());

if(checkAndReplaceOpen(newNode, node, true) == false)

openQ.add(newNode);

}

}

if((y-1) >= 0 && (x+1) < map[y].length && map[y-1][x+1] !=1) {

Node newNode = new Node(x+1, y-1, map[y-1][x+1], node);

if(onClosedList(newNode) == false) {

newNode.setG(node.getG()+14);

newNode.setH(manhattanDist(newNode, endNode));

newNode.setF(newNode.getG()+newNode.getH());

if(checkAndReplaceOpen(newNode, node, true) == false)

openQ.add(newNode);

}

}

}

private Node solve() {

Node startNode = new Node(startX, startY, 0, null);

startNode.setH(manhattanDist(startNode, endNode));

startNode.setF(startNode.getG() + startNode.getH());

openQ.add(startNode);

while(openQ.isEmpty() == false) {

Node currNode = openQ.remove();

closedQ.add(currNode);

if(currNode.getX() == endX && currNode.getY() == endY) {

return currNode;

}

addNeighbors(currNode);

}

System.out.println(“No solution found!”);

return startNode;

}

public LinkedList<Node> algorithm() {

LinkedList<Node> pathr = new LinkedList<Node>();

LinkedList<Node> path = new LinkedList<Node>();

Node addNode = solve();

while(addNode.getParent() != null) {

pathr.add(addNode);

addNode = addNode.getParent();

}

pathr.add(addNode);

while(pathr.isEmpty() == false)

path.add(pathr.removeLast());

return path;

}

public void printList(LinkedList<Node> list) {

Iterator<Node> it = list.iterator();

while(it.hasNext())

System.out.println(it.next());

}

}

Mar 14

Welcome to Binusian blog.
This is the first post of any blog.binusian.org member blog. Edit or delete it, then start blogging!
Happy Blogging 🙂